

Page 1 of 63

Page 2 of 63

Table of Contents
Preface

What you're going to learn

What you'll need to get the most from this book

Code examples

Get in touch

Feedback

Spotted a mistake?

Reviews

Part 1: Doing things the Express way

The middleware pattern

Middleware syntax

The two types of middleware

Plain middleware

Error handling middleware

Using middleware

At the route level

At the router level

At the application level

Middleware in a validation strategy

Page 3 of 63

Request body parsing

Request validation

Sending an error response

Summary

Part 2: Validating requests

The JSON Schema speci�cation

Ajv (Another JSON Schema Validator)

Learning JSON Schema

Understanding JSON Schema

JSON Schema Cheat Sheet

JSON Schema speci�cations

Why use JSON Schema and not validation library X?

No library, framework or language lock-in

Move between Node.js frameworks, or even languages, and

take your schemas with you

Active and supportive community

JSON Schema is on a path to becoming a standard

Sidenote: JSON (JavaScript Object Notation) vs JavaScript objects

Create a validation pipeline with JSON Schema

Parsing a JSON request body in Express

Body parsing in older versions of Express

Page 4 of 63

De�ning JSON schemas in Node.js

Integrating Ajv into your Express application

Using a JSON schema to validate a response body

Validating other request properties

Summary

Part 3: Error responses

Introducing the 'Problem Details for HTTP APIs' speci�cation

Problem types and Problem details objects

Example problem details response

More details, clearer problems

Breakdown of a problem details object

Sending validation errors in problem details responses

De�ne problem types and map them to JavaScript error

classes

Look up the problem details for an error

Send validation errors in a problem details response

Summary

Part 4: Putting it all together

Example Express API application

Example requests and responses

Request body with missing 'last_name' property

Page 5 of 63

Request body with empty 'last_name' property

Request body with invalid type for 'age' property

Summary

Recipes

1. Validating your schemas

Add schema validation to your project

Automated validation

git hook integration

Continuous integration (CI)

2. Setting default values

Specifying default values in a schema

Con�gure Ajv to use the default values

Example request and response

3. Custom error messages

Install ajv-errors

Con�gure ajv-errors

A note on the Ajv allErrors option

Specifying an error message for a property

Example request and response

Other ways of specifying error messages

Page 6 of 63

Preface

What you're going to learn

In this book you'll learn:

How Express middleware �ts into a validation strategy.

What the JSON Schema speci�cation is and how you can apply it to validate

request data.

How the Problem Details for HTTP APIs speci�cation can help you create

awesome error responses.

How to bring all these things together to build better Express APIs.

The code examples in this book will show you how to apply validation best

practices in your Express APIs. The best part though, is the �exibility of the

tools and techniques which I'm going to show you. By the end of the the book

you'll be able to mix and match everything you've learnt to create your own

API validation strategy.

Let's get started!

What you'll need to get the most from this
book

You must have Node.js v14.13.0 or greater installed. I recommend using nvm to

manage your Node.js installations.

https://github.com/nvm-sh/nvm

Page 7 of 63

When installing Express make sure you are using at least v4.16.0. This is the

earliest 4.x version of Express which comes bundled with body parser

middleware.

Code examples

All code examples in this book use the ECMAScript module syntax.

All code examples in this book are also bundled as standalone JavaScript �les.

They are contained in the examples directory of the zip �le that you

downloaded when you purchased this book. For usage instructions look at the

README in that directory.

Get in touch

Feedback

If you have any feedback that you'd like to share about this book, drop me an

email at simon@simonplend.co.uk.

Spotted a mistake?

If you've spotted a mistake in this book, please raise an issue on GitHub and I

will review it: https://github.com/simonplend/express-api-validation-

essentials-issues/

Reviews

https://nodejs.org/api/esm.html
https://github.com/simonplend/express-api-validation-essentials-issues/

Page 8 of 63

As this book has been self-published, there's no o�cial platform where you

can leave a review for it. Please do tweet or blog your thoughts about it though!

Page 9 of 63

Part 1: Doing things the
Express way
In order to e�ectively validate requests to your API and send consistent error

responses you'll need to work with the patterns and conventions which are

baked in to Express. The most fundamental pattern it uses is "middleware".

Express is a routing and middleware web framework that has
minimal functionality of its own: An Express application is
essentially a series of middleware function calls.

— Source: Express guide: Using middleware

In this part of the book we're going to dig into the middleware pattern. We'll

also look at the di�erent types of middleware and how they will shape our

validation strategy.

The middleware pattern

In Express, middleware are a speci�c style of function which you con�gure

your application to use. They can run any code you like, but they typically take

care of processing incoming requests, sending responses and handling errors.

They are the building blocks of every Express application.

When you de�ne a route in Express, the route handler function which you

specify for that route is a middleware function:

https://expressjs.com/en/guide/using-middleware.html

Page 10 of 63

app.get("/user", function routeHandlerMiddleware(request, response, next) {

 // execute something

});

(Example 1.1)

Middleware is �exible. You can tell Express to run the same middleware

function for di�erent routes, enabling you to do things like making a common

check across di�erent API endpoints.

As well as writing your own middleware functions, you can also install third-

party middleware to use in your application. The Express documentation lists

some popular middleware modules. There are also a wide variety of Express

middleware modules available on npm.

Middleware syntax

Here is the syntax for a middleware function:

/**

 * @param {Object} request - Express request object (commonly named `req`)

 * @param {Object} response - Express response object (commonly named `res`)

 * @param {Function} next - Express `next()` function

 */

function middlewareFunction(request, response, next) {

 // execute something

}

(Example 1.2)

Note: You might have noticed that I refer to req as request
and res as response . You can name the parameters for your
middleware functions whatever you like, but I prefer verbose

https://expressjs.com/en/resources/middleware.html
https://www.npmjs.com/

Page 11 of 63

variable names as I think that it makes it easier for other
developers to understand what your code is doing, even if
they're not familiar with the Express framework.

When Express runs a middleware function, it is passed three arguments:

An Express request object (commonly named req) - this is an extended

instance of Node.js' built-in http.IncomingMessage class.

An Express response object (commonly named res) - this is an extended

instance of Node.js' built-in http.ServerResponse class.

An Express next() function - Once the middleware function has

completed its tasks, it must call the next() function to hand o� control to

the next middleware. If you pass an argument to it, Express assumes it to

be an error. It will skip any remaining non-error handling middleware

functions and start executing error handling middleware.

Middleware functions should not return a value. Any value returned by

middleware will not be used by Express.

The two types of middleware

Plain middleware

Most middleware functions that you will work with in an Express application

are what I call "plain" middleware (the Express documentation doesn't have a

speci�c term for them). They look like the function de�ned in the middleware

syntax example above (Example 1.2).

Here is an example of a plain middleware function:

https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

Page 12 of 63

function plainMiddlewareFunction(request, response, next) {

 console.log(`The request method is ${request.method}`);

 /**

 * Ensure the next middleware function is called.

 */

 next();

}

(Example 1.3)

Error handling middleware

The di�erence between error handling middleware and plain middleware is

that error handler middleware functions specify four parameters instead of

three i.e. (error, request, response, next) .

Here is an example of an error handling middleware function:

function errorHandlingMiddlewareFunction(error, request, response, next) {

 console.log(error.message);

 /**

 * Ensure the next error handling middleware is called.

 */

 next(error);

}

(Example 1.4)

This error handling middleware function will be executed when another

middleware function calls the next() function with an error object e.g.

https://expressjs.com/en/guide/using-middleware.html#middleware.error-handling

Page 13 of 63

function anotherMiddlewareFunction(request, response, next) {

 const error = new Error("Something is wrong");

 /**

 * This will cause Express to start executing error

 * handling middleware.

 */

 next(error);

}

(Example 1.5)

Using middleware

The order in which middleware are con�gured is important. You can apply

them at three di�erent levels in your application:

The route level

The router level

The application level

If you want a route (or routes) to have errors which they raise handled by an

error handling middleware, you must add it after the route has been de�ned.

Let's look at what con�guring middleware looks like at each level.

At the route level

This is the most speci�c level: any middleware you con�gure at the route level

will only run for that speci�c route.

Page 14 of 63

(Example 1.6)

At the router level

Express allows you to create Router objects. They allow you to scope

middleware to a speci�c set of routes. If you want the same middleware to run

for multiple routes, but not for all routes in your application, they can be very

useful.

import express from "express";

const router = express.Router();

router.use(someMiddleware);

router.post("/user", createUserRouteHandler);

router.get("/user/:user_id", getUserRouteHandler);

router.put("/user/:user_id", updateUserRouteHandler);

router.delete("/user/:user_id", deleteUserRouteHandler);

router.use(errorHandlerMiddleware);

(Example 1.7)

At the application level

This is the least speci�c level. Any middleware con�gured at this level will be

run for all routes.

app.get("/", someMiddleware, routeHandlerMiddleware, errorHandlerMiddleware);

https://expressjs.com/en/api.html#router

Page 15 of 63

app.use(someMiddleware);

// define routes

app.use(errorHandlerMiddleware);

(Example 1.8)

Technically you can de�ne some routes, call app.use(someMiddleware) , then

de�ne some other routes which you want someMiddleware to be run for. I

don't recommend this approach as it tends to result in a confusing and hard to

debug application structure.

You should only con�gure middleware at the application level if absolutely

necessary i.e. it really must be run for every single route in your application.

Every middleware function, no matter how small, takes some time execute. The

more middleware functions that need to be run for a route, the slower requests

to that route will be. This really adds up as your application grows and is

con�gured with lots of middleware. Try to scope middleware to the route or

router levels when you can.

Middleware in a validation strategy

We will need to use middleware at three key points in the request validation

process.

Request body parsing

Before a JSON request body can be validated, it must �rst be parsed.

Page 16 of 63

For request body parsing we'll be using the express.json() middleware

function. At the time of writing, this is one of only three middleware functions

which are built-in to Express.

Request validation

We will be using the express-json-validator-middleware module to help us

validate our requests.

If there are validation errors, the validator middleware will call the next()

function with a ValidationError error object.

Sending an error response

We will create an error handler middleware to handle any ValidationError

errors which have been created by the validator middleware.

Our error handler middleware will take care of formatting this error and

sending it as a response back to the client.

Summary

In this part of the book, we've learnt about the middleware pattern in Express.

We've also learnt about the di�erent types of middleware and how they will �t

into our validation strategy.

Now it's time to learn about the tools which can help us validate our API

requests.

https://expressjs.com/en/guide/using-middleware.html#middleware.built-in
https://github.com/vacekj/express-json-validator-middleware

